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A~~act-Dimensional analysis of the heat transport through He II-filled ducts is carried out on the basis of 
Landau’s two fluid equations for the limit of normal fluid depletion. Resulting functional relations between 
relevant groups of variables for Newtonian fluid behavior are extended up to the lambda point (TJ using the 
temperature dependence of the effective “turbulent” viscosity. The resulting convection equation is in good 
agreement with data of many authors and our own results from about 1.2 K to Tn and for diameters of the 

order lo-’ to 1 cm. 

NOMENCLATURE 

turbulent reciprocal viscosity [m s/kg] ; 
hydraulic diameter [m] ; 
mass flux density [kg/m’s] ; 
constant ; 
characteristic length [m] ; 
dimensionless numbers (i = 1,2,3,q, PT); 
the~om~hani~l pressure [N/m’] ; 
heat flux density [W/m*] ; 
entropy [J/K: kg] ; 
time [s] ; 
temperature [K] ; 
velocity [m/s] ; 
relative velocity [m/s]. 

Greek symbols 

rl? shear viscosity [kg/m s]; 

6% density [kg/m3]. 

Subscripts 

n, normal fluid ; 

% superfluid ; 
1, lambda point. 

1. INTRODUCTION 

RECENT applications of He II as a coolant for super- 
conducting energy storage [l] and in space systems 
[2] have stimulated considerable interest in the super- 
fluid thermohydrodynamics. He II permits unusual 
thermomechanical convection modes [3] at tempera- 
tures useful for optimum parameters of the supercon- 
ducting state (e.g. of the most frequently used alloy 
Nib-Ti). Therefore we have extended investigations 
of He11 transport limits [4] and post-transition 
studies after crossing of the lambda curve [S] to the 
regime of Gorter-Mellink convection [6]. This case is 
characterized by axial transport of thermal energy 
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th?ough a He II-filled duct with insulated walls which 
is heated at one end, and cooled at the other end. 
Because of a special, unknown transport property 
(AOM), various theoretical approaches have received 
attention [7]. Improvements of this state ofknowledge 
appear to be suggested by recent better understanding 
of the phenomenological continuum description of 
He II [s]. Therefore, it is the purpose of the present 
paper to propose a convection equation based on 
dimensional analysis of the ideal Landau equations 
[9,10], extended to include dissipation of energy 
during real non-conservative flow of heat. 

First, we consider in Section 2 the extended Landau 
equations of the two-fluid model approach in the limit 
of normal fluid depletion. This permits simplifications 
for the formulation of dimensionless groups of vari- 
ables. Subsequently we turn in Section 3 to the Gorter- 
Mellink transport property and in particular to its 
relationship to the preceding section. This leads to a 
surprisingly simple function for A,,. Finally, contact 
between the dimensionless frame of governing vari- 
ables and experimental data is established in Section 4. 
The resulting convection equation covers data in a 
wide range of the dimensionless driving potential. 

2. NORMAL FLUID DEPLETION LIMIT 

According to the two-fluid model both normal and 
superfluid contribute to the density 

k/P + P,lP = 1. (1) 

At thermodynamic equilibrium, the contributions on 
the LHS of equation (1) are unique functions of the 
temperature. At low T, we have p,/p CC 1, i.e. little 
normal fluid, and consequently a small entropy. In this 
limit a dimensional analysis is simplified because the 
superfluid density ratio (p,/p) x 1. Therefore it is 
expected that superfluid constraints may not show up 
explicitly. A simplified description of convection ap- 
pears to be possible. Consider the Landau equations 
[9,10] modified for the special case of heat flow. Its 
non-linear two-fluid model thermohydrodynamics has 
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been treated for undamped oscillations without dissi- rude lo-” cm. If the normal fluid behaves indeed a:, a 
pation [ll]. Friction, however, is important for the Newtonian system, a simple functional relation be- 
present transport of heat. The simplest non- tween (7) and (8) should result. However, for an 
conservative case is viscous dissipation by the normal extended temperature range further information is 
fluid whose friction is proportional to n,V’w (without needed. Therefore we turn to the reciprocal turbulent 
additional friction forces). Adopting this term we viscosity AtiM, known as Gorterr Mellink mutual 
rewrite the modified Landau equations as follows : friction parameter. 

Mass flux density constraint: 

j = pv = pnv. + /),v, = 0. (2) 

Axial steady heat flow (expressed as relative flow 

velocity w = (v,-v,)): 

3. GORTER MELLINK TRANSPORT 
PROPERT\ 

In the original GorterMellink result A,;, IS an 
unknown function obtained from experimental data 
for 4 = q(grad T) 

Thermomechanical pressure gradient (from irrever- 
sible thermodynamics [ 121) : 

VP, = psvl-. (4) 

Equation of relative flow (“counterflow”) : 

Dw/dt = $ + (w grad)w 

= - (P/P,P grad T + (rl,l~)V~w. (5) 

Using the standard techniques of similarity studies we 

arrive at the dimensionless numbers of Table 1 along 

with the ratio (p,/p,) for steady flow. 
Concerning entry N, in Table 1 we note that 

equations (2) and (3) imply 

pL;, = &W = p&(p/p,). (6) 

Further, early approaches made use of the “Leiden 

Reynolds number” [13] N, = pli,L,,$,. In view of 
equations (3) and (6) we express subsequently the 

dimensionless counterflow rate (L, = D) as 

N, = WDp/q, = $& (P/P,) 
n 

= N, (P/P,). (7) 

A dimensionless pressure gradient without flow rate 
term is obtained as the product N, N, of Table 1. 

N,N, = ~~,VPT~(P/V~)(PIP~~ 

= NVPAPIP"). (8) 

Gorter-Mellink transport is realized at relatively large 

IVTI with duct diameters above the order of magni- 

Table 1. Dimensionless numbers 

‘Vi 

N, = *L,P/v. 

N, = \VP,IL,/p,W’ 

N, = ~wLfP/P. 

Wrl” 

Comments 

= “Leiden Reynolds number” 
for I=0 and p.ep 

dimensionless thermomechanical 
pressure gradient 

represents transport resistance 
(-ratio of pressure difference to 
transport rate) 

In the light of dimensionless groups (7) and (8) 
equation (9) represents an asymptotic convection 

limit at which the influence of D on 4 disappears. There 
have been two special cases from which information on 

ACM may be extracted. First, at low 7; (p,/p cc l), the 
lower limit of the Gorter-Mellink regime is one of 
many different “critical” velocities [13]. This limit 
allows evaluation of A,, in terms of nn. Secondly, at 
“high” temperature, (Ti - T)/T, at which pS,!p << 1, 
scaling relations have been proposed which permit a 
power law for AGM as a function of (p,/p). 

Turning to the low temperature constraint we note 
that Dimotakis’ criterion for the critical velocity I?, 

[14] expresses data on the basis of 

WcDpAGM = const : 117~. f 10) 

On the other hand, the critical Reynolds number for 
normal fluid is of the order 10” [I 3] 

Dpc,/q, - 10’ ill) 

Comparing (10) and (11) we obtain qnAGM = const in 

the normal fluid depletion limit 

In the vicinity of the lambda point the experimental 
data suggest that AGM increases beyond all limits. For 

this case (T, - T)/T, << 1. Ahlers [15] has proposed a 
power law for AGM with a constant exponent. As (p,/p) 

is very small, one may expect that AGM may be written 
in terms of (p,/p)- ’ to some power. Data suggest that 
the ratio Nq/(NvpT)i” is proportional to ( ps/p)4’3 [ 161. 
According to equation (9) this implies that in the 
“high” temperature limit we have 

A GM - ll(P,lP)i (P”/P) -+ 1. 113) 

Comparing the two statements (12) and (13) we see 
that both constraints are satisfied when 

A GM = cow (P/PM, (14) 

(const = K$). In an early outline [16] however, the 
data show considerable departures from equation (14) 
when D is very small. Therefore, we turn to recent 
experimental data and literature results for Gorter 
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Mellink transport in the asymptotic limit under con- 
sideration, i.e. large D-values. 

4. GENERALIZED CONVECTION EQUATION 

The significance of equation (14) has been assessed 
by plotting the product A& . qn, i.e. the dimensionless 
turbulent viscosity vs the superfluid density ratio. 
Figure 1 displays data for three different duct geomet- 
ries. Annulus results obtained in the course of Taylor- 
Couette flow studies [17] constitute non-rotating 
limits of data sets for finite rotation rates [18]. Further, 
Fig. 1 includes slit results for He11 between two 
parallel plates [19], and tube data [20]. Within data 
scatter the experimental information appears to be in 
reasonable agreement with equation (14) in the (p,/p)- 
range covered. Therefore, we turn to a more complete 
inspection of data sets reported in the literature and 
obtained by us in the context of [17]. The resultant 
convection equation for axial heat flow is rearranged 
on the basis of equation (14) obtained for A,, in the 
previous paragraph. 

After insertion of equation (14) into equation (9) we 
rewrite q as 

4 = Ko,~,~~l(~,l~“)~IV~l?“/~j”3 (15) 

where KGM is of the order of the reciprocal critical 
value of the product A,, ‘qn, [equation (12)]. It is 
convenient to express equation (15) in dimensionless 
form on the basis of the grouping of variables in 
equations (7) and (8) for L, = D 

pWD 
-=K ~3w~l tplp) l/3 

GM s I 
rl. 

2 
rl. 

(16) 
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FIG. 1. Transport property ratio. 

[with VP, of equation (4)]. Figure 2 plots the dimen- 
sionless relative velocity (7) vs the group (8). Aside 
from the present data [17] (designated as R-12 to R- 
15), we have included results of [19-271. The ther- 
mophysical properties have been evaluated at the 
arithmetic mean temperature of the He II in the duct; 
(symbols are listed in Table 2). 

It is seen from Fig. 2 that within data scatter there is 
considerable support for equation (15), and (16) 
respectively. From a least square fit the (weighted) 

/SLOPE l/3 
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FIG. 2. Dimensionless countertlow rate vs dimensionless generalized driving force. 
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Table 2. Data symbols of Fig. 2 

.4uthor(s) Reference 

V Chase 

0 Linnet t’:l 
n Brewer-Edwards 
+ Childers-Tough t;;; 
v Critchlow-Hemstreet [23] 
a Eaton Lee-Agee 
v Keesom-Duyckaerts [;;I 

: 
Keesom-Saris- Meyer PI 
Vinen 1271 
Soloski : Specimen 

+ R-12 
X R-13 tii] 

: 
R-14 
R-15 I_;ij 

i. 

4. 

5. 

6. 

average value of the constant is K,, = 11.3 i 1.4. 

Systematic departures occur at low temperature gra- 
dients when the transition to Gorter--Mellink flow is 
initiated. This point has been discussed in detail 
elsewhere [22]. This implies that the numerical eval- 

uation of the critical condition (12) leads to a some- 
what different value of the constant. At the upper limit 
of AT the data scatter may be enhanced somewhat due 
to the inadequacy of the arithmetic mean temperature 
for property evaluation. Details of this effect and other 

possibilities have been addressed in [17]. The strong 
temperature dependence implies variable power law 
exponents [d log A,Jd log T] up to 3 and even 

higher. Because of the finite AT-range accessible by 
Gorter-Mellink convection, various sets of literature 

data may be compared in a meaningful way only when 

the T-dependence is considered (e.g. [28]). 

7. 

8. 

9. 

10. 

II. 

12. 

13. 

14. 

15. 

16. 

Concerning the pressure influence on A,,. we note 

that q,-results are sparse at high pressures. From the 
few viscosity data available, we conclude that trans- 
port rates of [ 191 appear to agree with equation ( 16) in 

the range of pressure and temperature for which q,, is 
known. Also other recent data for pressurized He11 
[28-301 appear to be consistent with our final equa- 

tion (16). 

17. 

18 

19 

It is concluded that two disturbances exert only a 
minor influence on non-linear heat flow in He II at the 

present asymptotic Gorter-Mellink limit. One effect is 
the possibility of thermal shocks associated with 
second sound [IS]. The other point is the possible 

occurrence of additional special forces, either in the 
superfluid or in the normal fluid. Thus, we find nearly 
“classical” behavior in the normal fluid depletion limit 
of He11 which is quite compatible with expectation 
based on Newtonian fluid conditions. To prevent 
misunderstanding we emphasize that it is the large 
magnitude of the externally applied thermomechani- 
cal pressure difference which constitutes an extraor- 
dinary driving potential difference in He II systems. 
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ANALYSE DIMENSIONNELLE ET EQUATION DU FLUX AXIAL 
DE CHALEUR DANS LA CONVECTION DE GORTER-MELLINK 

R&urn&L’analyse dimensionnelle du transfert thermique dans des tubes remplis de He II est conduite sur 

la base des kquations g deux fluides de Landau, pour la limite du fluide normal. Les relations fonctionnelles 
r&&antes entre des groupes de variables, pour des fluides newtoniens, sont &endues jusqu’au point lambda 
(TA) en utilisant la d6pendance g la tempkrature de la viscositO “turbulente” effective. L’Bquation de 
convection est en bon accord avec les donntes de nombreux auteurs et avec des rtsultats originaux de 1,2 K g 

T1 et pour des diametres de lo-’ $ 1 cm. 

AUFSTELLUNG EINER GLEICHUNG MITTELS DIMENSIONSANALYSE 
FOR DEN AXIALEN WARMEFLUD VON HE II BEI 

GORTER-MELLINK-KONVEKTION 

Zusammenfassung-Es wird eine Dimensionsanalyse des Wlrmetransports durch mit He II gefiillte 
Leitungen auf der Grundlage der Zwei-Fluid-Gleichungen von Landau fiir den Grenzfall des Verschwindens 
des normalen Fluids durchgefiihrt. Resultierende Funktionen zwischen den relevanten Gruppen von 
Variablen fiir newtonsches Fliissigkeitsverhalten werden unter Verwendung der Temperaturabhlngigkeit 
der effektiven ‘turbulenten’ Ziihigkeit bis zum Lambda-Punkt erweitert. Die resultierende Konvektionsbe- 
ziehung befindet sich in guter Obereinstimmung mit MeDwerten vieler Autoren und unseren eigenen 

Resultaten von ungefihr 1, 2, K bis T1 und fiir Durchmesser der Grb;Benordnung von lo-’ bis 1 cm. 

BE3PA3MEPHbIti AHAJIM3 M YPABHEHME AJIR AKCPIAJIbHOTO TEfIJIOBOl-0 
IIOTOKA B CJIYqAE KOHBEKIJMki TOPTEPA-MEJLJIHHKA (HeII) 

AHHo+aqun - RblnOnHeH pa3MepHbSi aHan nepeHoca Tenna B 3anonUeHHbIx renueM-II KaHanax Ha 
OCHOBaHAB ypaBHeH&i naHnay nJIll nByX WifiKOCTeii. @yHKUnOHaJIbHble COOTHOmeHHR MeEAy COOT- 
Be~C~ByKJmSiMH rpyUnaMn UeWMeHHbIX, 0nWCbIBaK)mWX nOBeLIeHUe HbH)TOHOBCKOti ENLIKOCTB, 0606- 
UleHbI n0 JBM6na-rOrKa (r,) C UOMO4bIO reMnepaTypHOk 3aBUCCBMOCTW +$eKTnBHOfi <(Typ6yneHT- 
HOti* BBSKOCTB. nOJI)‘WHHOe )‘ptlBHCHHC KOHBeKUWU XOPOWO COrJlaCyC~CR C 3KCUCPWMCHTa,,bHbIMH 

.lWHHbIMA MHOrRX ElBTOpOB, a ElKIKe C pe3yJIbTaraMH HaCTOBmeti pa6oTbr ,nJlll nBana30Ha TeMnepaTyp 
or I,2 K ao r, B KaHanax nwaMeTpoM OT 10 * no I CM. 


